
 

 

 

LECTURE 3 

NUMERICAL INTEGRATION 

 

 

              



 

 

Numerous definite integrals an engineer may encounter in practice cannot be calculated by 

hand. Some others can, but the calculations are extremely tedious. In both cases, it seems 

reasonable to use some numerical technique instead, which delivers an approximate value of the 

integral. In other words – let the computer does the job! 

 In this lecture, we will explore some of the most basic numerical integration algorithms. Here, 

the discussion will be limited to regular definite integral of the functions of a single variable. 

Hence, we will be interested in the algorithms of approximate evaluation of the integral 
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b

a
I f x dx   

where the function f is continuous in the closed interval [a,b] (note that f is automatically 

bounded in this interval). The method of numerical integration will be referred to as  

integrations rules or quadratures.   

 

 

 

 



MID-POINT (M) INTEGRATION RULE 

 

The first integration method to discuss is the mid-

point rule. Its idea is very simple – see the figure. 

Thus, the formula can be written as 
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TRAPEZOIDAL (T) INTEGRATION RULE 

 

Another possibility is to approximate the integral I 

by the trapezoidal formula (the name is obvious – see 

figure on the left). The corresponding formula reads 

( )[ ( ) ( )]1
T 2

I b a f a f b    

Thus, we approximate f  by the linear function and 

integrate analytically.  
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SIMPSON (S) INTEGRATION RULE 
 

 

Yet another simple method consists in 

approximating the function f by the second-

order interpolating polynomial. The nodes are 

the midpoint and both ends of the integration 

interval. Then, the polynomial is integrated 

analytically. One obtains the formula 
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where c = (a + b)/2. 
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THE NEWTON-COTES RULES 
 

The idea behind the trapezoidal and Simpson rules is to approximate the integrated function by 

the interpolating polynomial. This idea can be generalized to higher orders by introducing 

larger number of the nodal points inside the integration interval. Then the value of the integral 

is evaluated from the formula  
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In the above, the symbol Pn denotes the nth-order interpolating polynomial. We know that such 

polynomial can be expressed as the linear combination of special Lagrange polynomials (see 

Lecture 1)
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Thus, the general Newton-Cotes rule has the form 
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ACCURACY OF THE INTEGRATION RULES 
 

Let us discuss shortly the issue of accuracy of the numerical integration. Consider first the 

midpoint rule. Using the Taylor theorem we can write 
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Integrating both sides of the above equality we get 
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For the last term we have used the mean-value theorem, namely 
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Analogous analysis for the trapezoidal rule is carried out as follows. First, using the result 

proven in the Lecture 1 we can write 
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Here, P1 is the linear function which interpolates the endpoint values of the function f. The 

integration of the above equality yields 
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Note that we have obtained consistent result: the trapezoidal rule overestimates the value of the 

integral of a convex functions ( f 0  ) and underestimates the value of the integral of a 

concave function ( f 0  ). 

 

 



 

The accuracy analysis of the Simpson method can be performed in the similar way (however, it 

is more laborious). The following estimate can be obtained 
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Note that the error expression for the midpoint and trapezoidal rules contains the value of the 

second derivative of the integrated function in some intermediate point. It is consistent with the 

obvious observation that both methods are exact for any linear function. On the other hand, they 

are not exact for the second-order polynomials. We say that midpoint and trapezoidal rules are 

the first-order methods. The error estimation of the Simpson rule contains the 4th-order 

derivative of the function  f. This means that this method is exact for all polynomials of the 

order not larger than 3. Hence, the Simpson rule is of the third order. 

 

In general, the order of the Newton-Cotes rules (closed, i.e. using both endpoints as the 

interpolation nodes) based on the n
th

-order interpolation (n + 1 points are used) is equal n 

if n is odd (1,3,..) or n + 1 if n is even (2,4,..). 

 



 

COMPOSITE INTEGRATION RULES 

 

Significant improvement of accuracy of the numerical integration can be obtained by using the 

composite rules. The idea is simple: instead of using any of the above mentioned rules for the 

whole interval [a,b] we use it for a number of smaller subintervals and in the end we summate 

the contributions. In other words, if we have the subdivision of the interval described as 
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The composite midpoint rule (CMR) consists in evaluation of each integral in the above sum 

by means of the (simple) midpoint formula. Thus 
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If the interval [a,b] is divided into n equal subintervals  then the composite midpoint rule can 

be written as 
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It can be shown that the error of the CMR can be expressed by the formula 
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Again, we conclude that CMR is exact for any linear function. Obviously, it is also exact for 

any piecewise-linear function providing that the division to subintervals matches the “pieces”. 

But what is even more important, the integration error shrinks with increasing number of 

subintervals. In particular, for the uniform division the error diminishes as quick as h
2
.  

 

 

 



 

In the similar manner (see figure), one 

can define the composite trapezoidal 

rule (CTR).  

 

 

 

 

Its general formula is 
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For the uniformly distributed nodes one gets
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and the error formula is   
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Thus, the CTR is basically as good as the CMR. However, the CTR is particularly useful for 

smooth periodic functions when the length of the integration interval is equal to the period. It 

can be shown (using the Euler-McLaurin formula) that in such case the error of the CTR 

shrinks to zero faster than any power of the distance h! We say that in such circumstances the 

CTR method attains spectral convergence rate.  
 

Finally, the composite Simpson rule (CSR) reads 
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Again, for the equidistant nodes, the above formula can be re-written as 
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The corresponding error estimate has the following form 
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We see that this time the error reduces proportionally to the 4th power of the distance h. For 

majority of the practical application the CSR provides satisfactory level of accuracy with a 

reasonable number of nodes. However, further improvement of accuracy may be achieved by 

using the recursive Romberg integration. 
 

 

 

 

 

 

 

 

 

 



GAUSS-LEGENDRE INTEGRATION 
 

We will discussed an alternative and very popular method of approximate evaluation of the 

integrals – the Gauss-Legendre Method (GLM). The following calculation shows that it is 

sufficient to formulate this method (actually – any method) for the integral in the standard 

interval [-1,1]: 
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In the above                           ( ) [ ( ) ( )]1 1
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In order to derive an example of the GLM consider the following formula 
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We need to find x1, x2, w1 and w2 such that the above formula is exact for the polynomials of 

the highest possible order. 



 

We  test this formula against monomials of increasing order in order to obtain the system of 

equations for the unknown parameters of the GLM: 
 

( )

( )

( )

( )

1

1 2
1

1

1 1 2 2
1

1
2 2 2 22

1 1 2 23
1

1
3 3 3 3

1 1 2 2
1

F t 1 1dx 2 w w

F t x xdx 0 w x w x

F t x x dx w x w x

F t x x dx 0 w x w x









    

    

    

    









 

 

The equations for x1, x2, w1 and w2 are: 
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The solution of the obtained equations is obtained as follows 
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Thus, the final Gauss-Legendre formula reads 
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Note that this formula is exact for any polynomial of the order not larger than 3. In fact, the 

following error estimate can be derive 
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GENERAL APPROACH TO GAUSS QUADRATURES 
 

Similarly to the Newton-Cotes rules, the Gauss integration methods use the interpolation 

polynomials to approximate the integrated function.  However, the interpolation nodes are 

chosen in a special way which guarantees the highest possible order of accuracy. The way these 

nodes are selected is strictly related to the concept of orthogonal polynomials. 

 

Consider the standard interval [-1,1]. Let the function Ω, positive and integrable in [-1,1], is 

given. We say that the given set of the polynomials 
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is Ω-orthogonal in the interval  [-1,1]  if  
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Two important examples are: 

1. Chebyshev polynomials 
 

We already (see Lecture 2) know that these polynomials are defined by the recurrence formula 
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The Chebyshev polynomials are Ω-orthogonal in the following sense 
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where the weight function Ω is  
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2. Legendre polynomials 

 

The Legendre polynomials are defined by the following recurrent formula 
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or they can be expressed explicitly as 
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They are also simply orthogonal in [-1,1], i.e., the weight function Ω ≡1 
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The general Gauss integration rule is design to evaluate the integral of the form  
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Such rule can be written as 
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The coefficients are computed from the following integrals 
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where ( ), ,..,jl x j 0 n  are the Lagrange polynomials defined in the Lecture 1. 

 



 

How should we choose the nodes of the Gauss quadrature? The key result (proven by Carl 

Jacobi in 1826) is:  

 

The order of the interpolation quadrature based on n +1 nodes (thus, using interpolation 

by n
th

-order polynomial) is n + m  if and only if  the polynomial  
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satisfies the following conditions 
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Remark: Clearly, the polynomial n 1   is automatically Ω-orthogonal to all polynomials with 

the order not exceeding m-1. 
 

 

 



 

Proof: 
 

Assume that f is the (n+m)th
-order polynomial. Then, it can be written in the form 
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Since the order of the polynomial rn is at most equal n, then the application of the integration 

rule brings an exact value of the integral. Thus, we have 
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Now, due to the postulated property of the polynomial  υn+1 the equality holds 

( ) ( ) ( )
1

n 1 m 1
1

x q x x dx 0  


  

Using the fact that ( ) ( ) , ,..,j n jf x r x j 0 n    we finally get the conclusion  

( ) ( ) ( ) ( )
n n1

j n j j j
1

j 0 j 0

f x x dx r x f x  


 

    

 



The further conclusion is: 
 

The maximal order of the interpolation quadrature based on n +1 nodes is equal 

2n+1 (twice the number of the nodes minus one).  
 

Indeed, assume the opposite, i.e. let the postulated orthogonality condition hold for m = n+2. 

Then, it follows that the polynomial υn+1 is Ω-orthogonal to all polynomials of the order equal 

n+1. It means that in particular   
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But this would be possible only if ( )n 1 x 0   , which is not the case. 

 

So what is the choice of the nodes which corresponds to the most accurate quadrature?  
 

The maximal order of the GL integration rule is achieved when the polynomial n 1   is Ω-

orthogonal to all polynomials of the order equal n , i.e., 
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In particular, if ( )x 1   this polynomial in simply the Legendre polynomial  Ln+1: 
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The  nodes of the Gauss-Legendre quadrature are simply the roots of the Legendre polynomial 

Ln+1!  
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The following error estimate can be derived  
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It is evident that the order of this quadrature is 2n+1. 

 



 

In general, the roots of Legendre polynomials and corresponding coefficients cannot be found 

analytically. However, they have been very accurately computed numerically for different 

values of n. Their values can be easily found in many handbooks or in the Internet.  

Other kinds of the highly accurate Gauss integration methods can be design. In one wants to 

calculate the integral with the Chebyshev weight function, the appropriate  method would be 

the Gauss-Chebyshev quadrature. There exist also other types of Gauss-like quadratures which 

are design to approximate integrals over different intervals and different weight functions Ω.  

Note that if the actual interval of integration is different than the standard one, then one has to 

apply an appropriate (usually linear) change of variable. The details are left to the Reader. 

 

 


